Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Intern Med J ; 52(12): 2046-2067, 2022 12.
Article in English | MEDLINE | ID: mdl-36478370

ABSTRACT

Amyloidosis is a collection of diseases caused by the misfolding of proteins that aggregate into insoluble amyloid fibrils and deposit in tissues. While these fibrils may aggregate to form insignificant localised deposits, they can also accumulate in multiple organs to the extent that amyloidosis can be an immediately life-threatening disease, requiring urgent treatment. Recent advances in diagnostic techniques and therapies are dramatically changing the disease landscape and patient prognosis. Delays in diagnosis and treatment remain the greatest challenge, necessitating physician awareness of the common clinical presentations that suggest amyloidosis. The most common types are transthyretin (ATTR) amyloidosis followed by immunoglobulin light-chain (AL) amyloidosis. While systemic AL amyloidosis was previously considered a death sentence with no effective therapies, significant improvement in patient survival has occurred over the past 2 decades, driven by greater understanding of the disease process, risk-adapted adoption of myeloma therapies such as proteosome inhibitors (bortezomib) and monoclonal antibodies (daratumumab) and improved supportive care. ATTR amyloidosis is an underdiagnosed cause of heart failure. Technetium scintigraphy has made noninvasive diagnosis much easier, and ATTR is now recognised as the most common type of amyloidosis because of the increased identification of age-related ATTR. There are emerging ATTR treatments that slow disease progression, decrease patient hospitalisations and improve patient quality of life and survival. This review aims to update physicians on recent developments in amyloidosis diagnosis and management and to provide a diagnostic and treatment framework to improve the management of patients with all forms of amyloidosis.


Subject(s)
Amyloidosis , Cardiomyopathies , Heart Failure , Humans , Quality of Life , Amyloidosis/diagnosis , Amyloidosis/therapy , Amyloidosis/complications , Heart Failure/diagnosis , Prognosis , Bortezomib/therapeutic use , Cardiomyopathies/diagnosis
2.
Genes Immun ; 22(4): 227-233, 2021 08.
Article in English | MEDLINE | ID: mdl-34163021

ABSTRACT

Although genetic and epidemiological evidence indicates vitamin D insufficiency contributes to multiple sclerosis (MS), and serum levels of vitamin D increase on treatment with cholecalciferol, recent metanalyses indicate that this vitamin D form does not ameliorate disease. Genetic variation in genes regulating vitamin D, and regulated by vitamin D, affect MS risk. We evaluated if the expression of vitamin D responsive MS risk genes could be used to assess vitamin D response in immune cells. Peripheral blood mononuclear cells (PBMCs) were isolated from healthy controls and people with MS treated with dimethyl fumarate. We assayed changes in expression of vitamin D responsive MS risk (VDRMS) genes in response to treatment with 25 hydroxy vitamin D in the presence or absence of inflammatory stimuli. Expression of CYP24A1 and other VDRMS genes was significantly altered in PBMCs treated with vitamin D in the homeostatic and inflammatory models. Gene expression in MS samples had similar responses to controls, but lower initial expression of the risk genes. Vitamin D treatment abrogated these differences. Expression of CYP24A1 and other MS risk genes in blood immune cells indicate vitamin D response and could enable assessment of immunological response to vitamin D in clinical trials and on therapy.


Subject(s)
Multiple Sclerosis , Humans , Leukocytes, Mononuclear , Multiple Sclerosis/drug therapy , Multiple Sclerosis/genetics , Vitamin D , Vitamin D3 24-Hydroxylase/genetics
3.
Genes Immun ; 21(5): 335-347, 2020 11.
Article in English | MEDLINE | ID: mdl-33037402

ABSTRACT

Multiple lines of evidence indicate Multiple Sclerosis (MS) is affected by vitamin D. This effect may be mediated by methylation in immune cell progenitors. We aimed to determine (1) if haematopoietic stem cell methylation constrains methylation in daughter cells and is variable between individuals, and (2) the interaction of methylation with the vitamin D receptor binding sites. We interrogated genomic methylation levels from matching purified CD34+ haematopoietic stem cells and progeny CD14+ monocytes and CD56+ NK cells from 11 individuals using modified reduced representation bisulfite sequencing. Differential methylation of Vitamin D Receptor binding sites and MS risk genes was assessed from this and using pyrosequencing for the vitamin D regulated MS risk gene ZMIZ1. Although DNA methylation states at CpG islands and other sites are almost entirely recapitulated between progenitor and progeny immune cells, significant variation was detected at some regions between cell subsets and individuals; including around the MS risk genes HLA DRB1 and the vitamin D repressor NCOR2. Methylation of the vitamin D responsive MS risk gene ZMIZ1 was associated with risk SNP and disease. We conclude that DNA methylation settings in adult haematopoietic stem cells may contribute to individual variation in vitamin D responses in immune cells.


Subject(s)
DNA Methylation , Epigenome , Hematopoietic Stem Cells/metabolism , Multiple Sclerosis/genetics , Vitamin D/metabolism , Adult , CpG Islands , Female , HLA-DRB1 Chains/genetics , Hematopoiesis , Hematopoietic Stem Cells/cytology , Humans , Killer Cells, Natural/cytology , Killer Cells, Natural/metabolism , Male , Middle Aged , Monocytes/cytology , Monocytes/metabolism , Multiple Sclerosis/metabolism , Nuclear Receptor Co-Repressor 2/genetics , Protein Binding , Receptors, Calcitriol/metabolism , Transcription Factors/genetics
4.
Heart Lung Circ ; 29(4): 575-583, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32001152

ABSTRACT

Amyloid cardiomyopathy is emerging as an important and under-recognised cause of heart failure and cardiac arrhythmias, especially in older adults. This disorder is characterised by extracellular deposition of amyloid fibrils that form due to misfolding of secreted light chains (AL) or transthyretin protein (ATTR). In ATTR, amyloid aggregates typically result from excessive accumulation of wild-type transthyretin (ATTRwt) or from protein structural defects caused by TTR gene variants (ATTRv). Amyloid fibril deposition may predominantly affect the heart or show multi-system involvement. Previously considered to be rare and inexorably progressive with no specific therapy, there has been enormous recent interest in ATTR cardiomyopathy due to upwardly-revised estimates of disease prevalence together with development of disease-modifying interventions. Because of this, there is a clinical imperative to have a high index of suspicion to identify potential cases and to be aware of contemporary diagnostic methods and treatment options. Genetic testing should be offered to all patients with proven ATTR to access the benefits of new therapies specific to ATTRv and allow predictive testing of family members. With heightened awareness of amyloid cardiomyopathy and expanded use of genetic testing, a substantial rise in the numbers of asymptomatic individuals who are carriers of pathogenic variants is expected, and optimal strategies for monitoring and treatment of these individuals at risk need to be determined. Pre-emptive administration of fibril-modifying therapies provides an unprecedented opportunity for disease prevention and promises to change amyloid cardiomyopathy from being a fatal to a treatable disorder.


Subject(s)
Amyloid Neuropathies, Familial , Cardiomyopathies , Genetic Predisposition to Disease , Genetic Testing , Amyloid Neuropathies, Familial/complications , Amyloid Neuropathies, Familial/genetics , Amyloid Neuropathies, Familial/therapy , Cardiomyopathies/etiology , Cardiomyopathies/genetics , Cardiomyopathies/therapy , Humans , Prealbumin/genetics
5.
Sci Rep ; 10(1): 193, 2020 01 13.
Article in English | MEDLINE | ID: mdl-31932685

ABSTRACT

Translating the findings of genome wide association studies (GWAS) to new therapies requires identification of the relevant immunological contexts to interrogate for genetic effects. In one of the largest GWAS, more than 200 risk loci have been identified for Multiple Sclerosis (MS) susceptibility. Infection with Epstein-Barr virus (EBV) appears to be necessary for the development of Multiple Sclerosis (MS). Many MS risk loci are associated with altered gene expression in EBV infected B cells (LCLs). We have interrogated this immunological context to identify interaction between MS risk loci and EBV DNA copy number, intrinsic growth rate and EBV encoded miRNA expression. The EBV DNA copy number was associated with significantly more risk alleles for MS than for other diseases or traits. EBV miRNAs BART4-3p and BART3-5p were highly associated with EBV DNA copy number and MS risk loci. The poliovirus receptor (PVR) risk SNP was associated with EBV DNA copy number, PVR and miRNA expression. Targeting EBV miRNAs BART4-3p and BART3-5p, and the gene PVR, may provide therapeutic benefit in MS. This study also indicates how immunological context and risk loci interactions can be exploited to validate and develop novel therapeutic approaches.


Subject(s)
DNA Copy Number Variations , Epstein-Barr Virus Infections/complications , Herpesvirus 4, Human/genetics , Host-Pathogen Interactions/genetics , Multiple Sclerosis/pathology , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Cohort Studies , DNA, Viral/analysis , DNA, Viral/genetics , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/virology , Gene Expression Regulation , Genome-Wide Association Study , Herpesvirus 4, Human/isolation & purification , Humans , MicroRNAs/genetics , Multiple Sclerosis/epidemiology , Multiple Sclerosis/virology , Phenotype
6.
Genes Immun ; 21(2): 91-99, 2020 02.
Article in English | MEDLINE | ID: mdl-31619767

ABSTRACT

Epstein-Barr Virus (EBV) infection appears to be necessary for the development of Multiple Sclerosis (MS), although the specific mechanisms are unknown. More than 200 single-nucleotide polymorphisms (SNPs) are known to be associated with the risk of developing MS. About a quarter of these are also highly associated with proximal gene expression in B cells infected with EBV (lymphoblastoid cell lines-LCLs). The DNA of LCLs is hypomethylated compared with both uninfected and activated B cells. Since methylation can affect gene expression, and so cell differentiation and immune evasion, we hypothesised that EBV-driven hypomethylation may affect the interaction between EBV infection and MS. We interrogated an existing dataset comprising three individuals with whole-genome bisulfite sequencing data from EBV transformed B cells and CD40L-activated B cells. DNA methylation surrounding MS risk SNPs associated with gene expression in LCLs (LCLeQTL) was less likely to be hypomethylated than randomly selected chromosomal regions. Differential methylation was independent of genomic features such as promoter regions, but genes preferentially expressed in EBV-infected B cells, including the LCLeQTL genes, were underrepresented in the hypomethylated regions. Our data does not indicate MS genetic risk is affected by EBV hypomethylation.


Subject(s)
B-Lymphocytes/metabolism , Herpesvirus 4, Human/genetics , Multiple Sclerosis/genetics , B-Lymphocytes/physiology , DNA Methylation/genetics , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/metabolism , Epstein-Barr Virus Infections/virology , Herpesvirus 4, Human/metabolism , Humans , Promoter Regions, Genetic/genetics
7.
Genome Med ; 11(1): 26, 2019 04 30.
Article in English | MEDLINE | ID: mdl-31039804

ABSTRACT

BACKGROUND: Genome wide association studies have identified > 200 susceptibility loci accounting for much of the heritability of multiple sclerosis (MS). Epstein-Barr virus (EBV), a memory B cell tropic virus, has been identified as necessary but not sufficient for development of MS. The molecular and immunological basis for this has not been established. Infected B cell proliferation is driven by signalling through the EBV produced cell surface protein LMP1, a homologue of the MS risk gene CD40. METHODS: We have investigated transcriptomes of B cells and EBV-infected B cells at Latency III (LCLs) and identified MS risk genes with altered expression on infection and with expression levels associated with the MS risk genotype (LCLeQTLs). The association of LCLeQTL genomic burden with EBV phenotypes in vitro and in vivo was examined. The risk genotype effect on LCL proliferation with CD40 stimulation was assessed. RESULTS: These LCLeQTL MS risk SNP:gene pairs (47 identified) were over-represented in genes dysregulated between B and LCLs (p < 1.53 × 10-4), and as target loci of the EBV transcription factor EBNA2 (p < 3.17 × 10-16). Overall genetic burden of LCLeQTLs was associated with some EBV phenotypes but not others. Stimulation of the CD40 pathway by CD40L reduced LCL proliferation (p < 0.001), dependent on CD40 and TRAF3 MS risk genotypes. Both CD40 and TRAF3 risk SNPs are in binding sites for the EBV transcription factor EBNA2, with expression of each correlated with EBNA2 expression dependent on genotype. CONCLUSIONS: These data indicate targeting EBV may be of therapeutic benefit in MS.


Subject(s)
B-Lymphocytes/metabolism , CD4 Antigens/genetics , Herpesvirus 4, Human/physiology , Multiple Sclerosis/genetics , Polymorphism, Single Nucleotide , TNF Receptor-Associated Factor 3/genetics , B-Lymphocytes/virology , Cells, Cultured , Endonucleases/genetics , Herpesvirus 4, Human/pathogenicity , Humans , Quantitative Trait Loci , Transcriptome , Virus Latency , Virus Replication
8.
Hum Mol Genet ; 28(2): 269-278, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30285234

ABSTRACT

Epidemiological, molecular and genetic studies have indicated that high serum vitamin D levels are associated with lower risk of several autoimmune diseases. The vitamin D receptor (VDR) binding sites in monocytes and dendritic cells (DCs) are more common in risk genes for diseases with latitude dependence than in risk genes for other diseases. The transcription factor genes Zinc finger MIZ domain-containing protein 1 (ZMIZ1) and interferon regulatory factor 8 (IRF8)-risk genes for many of these diseases-have VDR binding peaks co-incident with the risk single nucleotide polymorphisms (SNPs). We show these genes are responsive to vitamin D: ZMIZ1 expression increased and IRF8 expression decreased, and this response was affected by genotype in different cell subsets. The IL10/IL12 ratio in tolerogenic DCs increased with vitamin D. These data indicate that vitamin D regulation of ZMIZ1 and IRF8 in DCs and monocytes contribute to latitude-dependent autoimmune disease risk.


Subject(s)
Autoimmune Diseases/genetics , Cell Differentiation/genetics , Interferon Regulatory Factors/genetics , Monocytes/cytology , Transcription Factors/genetics , Vitamin D/pharmacology , Vitamins/pharmacology , Cell Differentiation/drug effects , Cells, Cultured , Dendritic Cells/cytology , Geography, Medical , Humans
9.
JAMA Neurol ; 75(6): 681-689, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29507931

ABSTRACT

Importance: Neuroinflammation appears to be a key modulator of disease progression in amyotrophic lateral sclerosis (ALS) and thereby a promising therapeutic target. The CD4+Foxp3+ regulatory T-cells (Tregs) infiltrating into the central nervous system suppress neuroinflammation and promote the activation of neuroprotective microglia in mouse models of ALS. To our knowledge, the therapeutic association of host Treg expansion with ALS progression has not been studied in vivo. Objective: To assess the role of Tregs in regulating the pathophysiology of ALS in humans and the therapeutic outcome of increasing Treg activity in a mouse model of the disease. Design, Setting, and Participants: This prospective multicenter human and animal study was performed in hospitals, outpatient clinics, and research institutes. Clinical and function assessment, as well as immunological studies, were undertaken in 33 patients with sporadic ALS, and results were compared with 38 healthy control participants who were consecutively recruited from the multidisciplinary ALS clinic at Westmead Hospital between February 1, 2013, and December 31, 2014. All data analysis on patients with ALS was undertaken between January 2015 and December 2016. Subsequently, we implemented a novel approach to amplify the endogenous Treg population using peripheral injections of interleukin 2/interleukin 2 monoclonal antibody complexes (IL-2c) in transgenic mice that expressed mutant superoxide dismutase 1 (SOD1), a gene associated with motor neuron degeneration. Main Outcomes and Measures: In patients with ALS, Treg levels were determined and then correlated with disease progression. Circulating T-cell populations, motor neuron size, glial cell activation, and T-cell and microglial gene expression in spinal cords were determined in SOD1G93A mice, as well as the association of Treg amplification with disease onset and survival time in mice. Results: The cohort of patients with ALS included 24 male patients and 9 female patients (mean [SD] age at assessment, 58.9 [10.9] years). There was an inverse correlation between total Treg levels (including the effector CD45RO+ subset) and rate of disease progression (R = -0.40, P = .002). Expansion of the effector Treg population in the SOD1G93A mice was associated with a significant slowing of disease progression, which was accompanied by an increase in survival time (IL-2c-treated mice: mean [SD], 160.6 [10.8] days; control mice: mean [SD], 144.9 [10.6] days; P = .003). Importantly, Treg expansion was associated with preserved motor neuron soma size and marked suppression of astrocytic and microglial immunoreactivity in the spinal cords of SOD1G93A mice, as well as elevated neurotrophic factor gene expression in spinal cord and peripheral nerves. Conclusions and Relevance: These findings establish a neuroprotective effect of Tregs, possibly mediated by suppression of toxic neuroinflammation in the central nervous system. Strategies aimed at enhancing the Treg population and neuroprotective activity from the periphery may prove therapeutically useful for patients with ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/blood , Amyotrophic Lateral Sclerosis/genetics , Disease Models, Animal , Disease Progression , T-Lymphocytes, Regulatory/metabolism , Aged , Amyotrophic Lateral Sclerosis/diagnosis , Animals , Cohort Studies , Cross-Sectional Studies , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Prospective Studies , Superoxide Dismutase/genetics
10.
Clin Immunol ; 163: 96-107, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26762769

ABSTRACT

Multiple Sclerosis (MS) is an autoimmune disease treated by therapies targeting peripheral blood cells. We previously identified that expression of two MS-risk genes, the transcription factors EOMES and TBX21 (ET), was low in blood from MS and stable over time. Here we replicated the low ET expression in a new MS cohort (p<0.0007 for EOMES, p<0.028 for TBX21) and demonstrate longitudinal stability (p<10(-4)) and high heritability (h(2)=0.48 for EOMES) for this molecular phenotype. Genes whose expression correlated with ET, especially those controlling cell migration, further defined the phenotype. CD56+ cells and other subsets expressed lower levels of Eomes or T-bet protein and/or were under-represented in MS. EOMES and TBX21 risk SNP genotypes, and serum EBNA-1 titres were not correlated with ET expression, but HLA-DRB1*1501 genotype was. ET expression was normalised to healthy control levels with natalizumab, and was highly variable for glatiramer acetate, fingolimod, interferon-beta, dimethyl fumarate.


Subject(s)
Multiple Sclerosis/genetics , T-Box Domain Proteins/genetics , Adult , Aged , CD56 Antigen , Case-Control Studies , Cell Movement , Dimethyl Fumarate/therapeutic use , Epstein-Barr Virus Nuclear Antigens/blood , Female , Fingolimod Hydrochloride/therapeutic use , Gene Expression Regulation , Genetic Predisposition to Disease , Glatiramer Acetate/therapeutic use , HLA-DRB1 Chains/genetics , Humans , Immunologic Factors/therapeutic use , Immunosuppressive Agents/therapeutic use , Interferon-beta/therapeutic use , Longitudinal Studies , Male , Middle Aged , Multiple Sclerosis/drug therapy , Natalizumab/therapeutic use , Polymorphism, Single Nucleotide , Young Adult
11.
Mult Scler J Exp Transl Clin ; 2: 2055217316637087, 2016.
Article in English | MEDLINE | ID: mdl-28607721

ABSTRACT

A promising new avenue of MS research that may lead to a better understanding of pathogenesis, progression and therapeutic response, and to development of new therapies, comes from the recent identification of defined immune cell populations that are highly heritable. Such stable populations have been identified in three recent papers using extensive flow cytometric panels to investigate twin and family cohorts. They showed that while most of the variation in immune cell populations between individuals was not heritable, some was. This heritability was sometimes very high, and the authors concluded that it likely contributes to variability in response among individuals for disease and drug response traits.

12.
Clin Immunol ; 151(1): 16-24, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24495857

ABSTRACT

We have identified a marked over-representation of transcription factors controlling differentiation of T, B, myeloid and NK cells among the 110 MS genes now known to be associated with multiple sclerosis (MS). To test if the expression of these genes might define molecular subtypes of MS, we interrogated their expression in blood in three independent cohorts of untreated MS (from Sydney and Adelaide) or clinically isolated syndrome (CIS, from San Francisco) patients. Expression of the transcription factors (TF) controlling T and NK cell differentiation, EOMES, TBX21 and other TFs was significantly lower in MS/CIS compared to healthy controls in all three cohorts. Expression was tightly correlated between these TFs, with other T/NK cell TFs, and to another downregulated gene, CCL5. Expression was stable over time, but did not predict disease phenotype. Optimal response to therapy might be indicated by normalization of expression of these genes in blood.


Subject(s)
Multiple Sclerosis/genetics , T-Box Domain Proteins/genetics , Adolescent , Adult , Aged , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Case-Control Studies , Cell Differentiation , Chemokine CCL5/genetics , Chemokine CCL5/immunology , Cohort Studies , Female , Gene Expression Profiling , Gene Expression Regulation , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Killer Cells, Natural/pathology , Male , Middle Aged , Multiple Sclerosis/diagnosis , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Signal Transduction , T-Box Domain Proteins/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/pathology
13.
Mult Scler ; 20(6): 675-85, 2014 May.
Article in English | MEDLINE | ID: mdl-24126065

ABSTRACT

BACKGROUND: Multiple Sclerosis (MS) is an immune-mediated disease of the central nervous system which responds to therapies targeting circulating immune cells. OBJECTIVE: Our aim was to test if the T-cell activation gene expression pattern (TCAGE) we had previously described from whole blood was replicated in an independent cohort. METHODS: We used RNA-seq to interrogate the whole blood transcriptomes of 72 individuals (40 healthy controls, 32 untreated MS). A cohort of 862 control individuals from the Brisbane Systems Genetics Study (BSGS) was used to assess heritability and seasonal expression. The effect of interferon beta (IFNB) therapy on expression was evaluated. RESULTS: The MS/TCAGE association was replicated and rationalized to a single marker, ribosomal protein S6 (RPS6). Expression of RPS6 was higher in MS than controls (p<0.0004), and lower in winter than summer (p<4.6E-06). The seasonal pattern correlated with monthly UV light index (R=0.82, p<0.002), and was also identified in the BSGS cohort (p<0.0016). Variation in expression of RPS6 was not strongly heritable. RPS6 expression was reduced by IFNB therapy. CONCLUSIONS: These data support investigation of RPS6 as a potential therapeutic target and candidate biomarker for measuring clinical response to IFNB and other MS therapies, and of MS disease heterogeneity.


Subject(s)
Immunologic Factors/therapeutic use , Interferon-beta/therapeutic use , Multiple Sclerosis/metabolism , RNA, Messenger/blood , Ribosomal Protein S6/metabolism , Seasons , Adult , Biomarkers/analysis , Down-Regulation , Female , Humans , Male , Middle Aged , Multiple Sclerosis/diagnosis , Multiple Sclerosis/drug therapy , RNA/genetics , Young Adult
14.
Hum Mol Genet ; 23(6): 1425-34, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24158849

ABSTRACT

Genome-wide association studies have identified a linkage disequilibrium (LD) block on chromosome 12 associated with multiple sclerosis (MS), type 1 diabetes and other autoimmune diseases. This block contains CYP27B1, which catalyzes the conversion of 25 vitamin D3 (VitD3) to 1,25VitD3. Fine-mapping analysis has failed to identify which of the 17 genes in this block is most associated with MS. We have previously used a functional approach to identify the causal gene. We showed that the expression of several genes in this block in whole blood is highly associated with the MS risk allele, but not CYP27B1. Here, we show that CYP27B1 is predominantly expressed in dendritic cells (DCs). Its expression in these cells is necessary for their response to VitD, which is known to upregulate pathways involved in generating a tolerogenic DC phenotype. Here, we utilize a differentiation protocol to generate inflammatory (DC1) and tolerogenic (DC2) DCs, and show that for the MS risk allele CYP27B1 is underexpressed in DCs, especially DC2s. Of the other Chr12 LD block genes expressed in these cells, only METT21B expression was as affected by the genotype. Another gene associated with autoimmune diseases, CYP24A1, catabolizes 1,25 VitD3, and is predominantly expressed in DCs, but equally between DC1s and DC2s. Overall, these data are consistent with the hypothesis that reduced VitD pathway gene upregulation in DC2s of carriers of the risk haplotype of CYP27B1 contributes to autoimmune diseases. These data support therapeutic approaches aimed at targeting VitD effects on DCs.


Subject(s)
25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , Chromosomes, Human, Pair 12 , Dendritic Cells/immunology , Multiple Sclerosis/genetics , Vitamin D/metabolism , Adult , Aged , Dendritic Cells/metabolism , Dendritic Cells/pathology , Female , Gene Expression Regulation , Genetic Linkage , Genetic Predisposition to Disease , Genetic Variation , Humans , Male , Middle Aged , Multiple Sclerosis/epidemiology , Signal Transduction
15.
Innate Immun ; 20(6): 598-605, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24045339

ABSTRACT

Common IFN lambda 3 (IFNL3) variants have been demonstrated to affect spontaneous and treatment-induced clearance of hepatitis C virus (HCV) infection. The functional basis of these genetic variants has yet to be determined. Data examining the effect of IFNL3, specifically, in innate immune cells is lacking. Here, we determined the expression of IFNL3 and its receptor IFNLR1 in blood immune cell subsets and in HCV-infected livers. Next we assessed their sensitivity to IFNL3. All participants were genotyped for the IFNL3 SNPs rs8099917 and rs12979860. Importantly, unstimulated blood immune cells express significantly higher levels of IFNL3 than HCV liver biopsies. Plasmacytoid dendritic cells (pDCs) are the predominant producers of IFNLR1, especially in response to IFN-α. PBMCs, monocytes and pDCs all respond to IFNL3 based on MxA up-regulation. No differences in IFNL3 expression levels between rs8099917 or rs12979860 genotypes were detected. This is the first study to show peripheral blood pDCs to be the main producers of IFNL3, especially compared with HCV-infected livers. This makes innate immune cells the key players in determining the functional significance of INFL3 polymorphisms in patients with HCV.


Subject(s)
Hepacivirus/pathogenicity , Hepatitis C/pathology , Hepatitis C/virology , Immunity, Cellular/physiology , Immunity, Innate/physiology , Interleukins/physiology , Antiviral Agents/pharmacology , Cohort Studies , Dendritic Cells/immunology , Genotype , Hepacivirus/genetics , Hepatitis C/genetics , Humans , Interferon-alpha/pharmacology , Interferons , Interleukins/genetics , Interleukins/immunology , Liver/pathology , Liver/virology , Receptors, Cytokine/genetics , Receptors, Cytokine/immunology , Receptors, Cytokine/physiology , Receptors, Interferon
16.
PLoS One ; 8(10): e77508, 2013.
Article in English | MEDLINE | ID: mdl-24147013

ABSTRACT

The IL7Rα gene is unequivocally associated with susceptibility to multiple sclerosis (MS). Haplotype 2 (Hap 2) confers protection from MS, and T cells and dendritic cells (DCs) of Hap 2 exhibit reduced splicing of exon 6, resulting in production of relatively less soluble receptor, and potentially more response to ligand. We have previously shown in CD4 T cells that IL7Rα haplotypes 1 and 2, but not 4, respond to interferon beta (IFNß), the most commonly used immunomodulatory drug in MS, and that haplotype 4 (Hap 4) homozygotes have the highest risk of developing MS. We now show that IL7R expression increases in myeloid cells in response to IFNß, but that the response is haplotype-dependent, with cells from homozygotes for Hap 4 again showing no response. This was shown using freshly derived monocytes, in vitro cultured immature and mature monocyte-derived dendritic cells, and by comparing homozygotes for the common haplotypes, and relative expression of alleles in heterozygotes (Hap 4 vs not Hap 4). As for T cells, in all myeloid cell subsets examined, Hap 2 homozygotes showed a trend for reduced splicing of exon 6 compared to the other haplotypes, significantly so in most conditions. These data are consistent with increased signaling being protective from MS, constitutively and in response to IFNß. We also demonstrate significant regulation of immune response, chemokine activity and cytokine biosynthesis pathways by IL7Rα signaling in IFNß -treated myeloid subsets. IFNß-responsive genes are over-represented amongst genes associated with MS susceptibility. IL7Rα haplotype may contribute to MS susceptibility through reduced capacity for IL7Rα signalling in myeloid cells, especially in the presence of IFNß, and is currently under investigation as a predictor of therapeutic response.


Subject(s)
Dendritic Cells/metabolism , Gene Expression Regulation/drug effects , Haplotypes , Interferon-beta/pharmacology , Receptors, Interleukin-7/genetics , Adult , Aged , Alternative Splicing , Dendritic Cells/drug effects , Dendritic Cells/immunology , Female , Heterozygote , Homozygote , Humans , Lymphocyte Activation/immunology , Male , Middle Aged , Monocytes/drug effects , Monocytes/immunology , Monocytes/metabolism , Multiple Sclerosis/genetics , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Myeloid Cells/immunology , Myeloid Cells/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Interleukin-7/metabolism , Signal Transduction , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
17.
Hepatology ; 55(6): 1700-10, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22234924

ABSTRACT

UNLABELLED: In patients with chronic hepatitis C virus (HCV) infection, several variants of the interleukin-28B (IL28B) gene have been shown to correlate significantly with a sustained virologic response (SVR). Recent evidence shows that determination of one single IL28B polymorphism, rs12979860, is sufficient for predicting treatment outcome. We examined whether the combined determination of the IL28B single-nucleotide polymorphisms (SNPs), rs12979860, rs8099917, rs12980275, and rs8103142, might improve the prediction of SVR in patients with HCV. In the study cohort, 54% of 942 patients with chronic HCV type 1 infection had SVR. The IL28B SNPs, rs12979860CC and rs8099917TT, correlated significantly with SVR (68% and 62%). The SNPs, rs12980275 and rs8103142, were in strong linkage disequilibrium with rs12979860 and were not included in further analysis. In homozygous carriers of the rs12979860 responder allele C, additional genotyping of the rs8099917 SNP had no effect on response prediction, whereas in carriers of the rs12979860 nonresponder allele, the rs8099917 SNP improved the response prediction. In heterozygous carriers of the rs12979860 nonresponder T allele, SVR rates were 55% in the presence of the rs8099917TT genotype and 40% in patients carrying the rs8099917 TG or GG genotype. Analysis of an independent confirmation cohort of 377 HCV type 1-infected patients verified the significant difference in SVR rates between the combined genotypes, rs12979860CT/rs8099917TT and rs12979860CT/rs8099917TG (38% versus 21%; P = 0.018). CONCLUSION: Treatment outcome prediction could not be improved in homozygous carriers of the IL28B rs12979860 C responder allele by the additional determination of the rs8099917 SNP. There is evidence that a significant proportion of heterozygous carriers of the rs12979860 T nonresponder allele can profit with respect to SVR prediction by further determination of the rs8099917 SNP. (HEPATOLOGY 2012;55:1700-1710).


Subject(s)
Hepatitis C, Chronic/drug therapy , Interleukins/genetics , Polymorphism, Single Nucleotide , Adult , Cohort Studies , Drug Therapy, Combination , Female , Genotype , Haplotypes , Hepatitis C, Chronic/genetics , Hepatitis C, Chronic/virology , Humans , Interferons , Male , Middle Aged , Treatment Outcome
18.
PLoS Med ; 8(9): e1001092, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21931540

ABSTRACT

BACKGROUND: To date, drug response genes have not proved as useful in clinical practice as was anticipated at the start of the genomic era. An exception is in the treatment of chronic hepatitis C virus (HCV) genotype 1 infection with pegylated interferon-alpha and ribavirin (PegIFN/R). Viral clearance is achieved in 40%-50% of patients. Interleukin 28B (IL28B) genotype predicts treatment-induced and spontaneous clearance. To improve the predictive value of this genotype, we studied the combined effect of variants of IL28B with human leukocyte antigen C (HLA-C), and its ligands the killer immunoglobulin-like receptors (KIR), which have previously been implicated in HCV viral control. METHODS AND FINDINGS: We genotyped chronic hepatitis C (CHC) genotype 1 patients with PegIFN/R treatment-induced clearance (n = 417) and treatment failure (n = 493), and 234 individuals with spontaneous clearance, for HLA-C C1 versus C2, presence of inhibitory and activating KIR genes, and two IL28B SNPs, rs8099917 and rs12979860. All individuals were Europeans or of European descent. IL28B SNP rs8099917 "G" was associated with absence of treatment-induced clearance (odds ratio [OR] 2.19, p = 1.27×10(-8), 1.67-2.88) and absence of spontaneous clearance (OR 3.83, p = 1.71×10(-14), 2.67-5.48) of HCV, as was rs12979860, with slightly lower ORs. The HLA-C C2C2 genotype was also over-represented in patients who failed treatment (OR 1.52, p = 0.024, 1.05-2.20), but was not associated with spontaneous clearance. Prediction of treatment failure improved from 66% with IL28B to 80% using both genes in this cohort (OR 3.78, p = 8.83×10(-6), 2.03-7.04). There was evidence that KIR2DL3 and KIR2DS2 carriage also altered HCV treatment response in combination with HLA-C and IL28B. CONCLUSIONS: Genotyping for IL28B, HLA-C, and KIR genes improves prediction of HCV treatment response. These findings support a role for natural killer (NK) cell activation in PegIFN/R treatment-induced clearance, partially mediated by IL28B.


Subject(s)
HLA-C Antigens/genetics , Hepacivirus/pathogenicity , Hepatitis C, Chronic/therapy , Interleukins/genetics , Adult , Alleles , Antiviral Agents/therapeutic use , Case-Control Studies , Cohort Studies , Cross-Sectional Studies , Drug Therapy, Combination , Female , Genotype , Hepacivirus/immunology , Hepatitis C, Chronic/genetics , Hepatitis C, Chronic/immunology , Hepatitis C, Chronic/virology , Humans , Interferon-alpha/therapeutic use , Interferons , Killer Cells, Natural/immunology , Male , Middle Aged , Odds Ratio , Pharmacogenetics/methods , Polymorphism, Single Nucleotide , Predictive Value of Tests , RNA, Viral/analysis , Receptors, KIR/genetics , Receptors, KIR2DL3/genetics , Ribavirin/therapeutic use , Treatment Outcome , Viral Load , White People
19.
Genome Med ; 3(8): 57, 2011 Aug 31.
Article in English | MEDLINE | ID: mdl-21884576

ABSTRACT

BACKGROUND: The hepatitis C virus (HCV) infects nearly 3% of the World's population, causing severe liver disease in many. Standard of care therapy is currently pegylated interferon alpha and ribavirin (PegIFN/R), which is effective in less than half of those infected with the most common viral genotype. Two IL28B single nucleotide polymorphisms (SNPs), rs8099917 and rs12979860, predict response to (PegIFN/R) therapy in treatment of HCV infection. These SNPs were identified in genome wide analyses using Illumina genotyping chips. In people of European ancestry, there are 6 common (more than 1%) haplotypes for IL28B, one tagged by the rs8099917 minor allele, four tagged by rs12979860. METHODS: We used massively parallel sequencing of the IL28B and IL28A gene regions generated by polymerase chain reaction (PCR) from pooled DNA samples from 100 responders and 99 non-responders to therapy, to identify common variants. Variants that had high odds ratios and were validated were then genotyped in a cohort of 905 responders and non-responders. Their predictive power was assessed, alone and in combination with HLA-C. RESULTS: Only SNPs in the IL28B linkage disequilibrium block predicted drug response. Eighteen SNPs were identified with evidence for association with drug response, and with a high degree of confidence in the sequence call. We found that two SNPs, rs4803221 (homozygote minor allele positive predictive value (PPV) of 77%) and rs7248668 (PPV 78%), predicted failure to respond better than the current best, rs8099917 (PPV 73%) and rs12979860 (PPV 68%) in this cross-sectional cohort. The best SNPs tagged a single common haplotype, haplotype 2. Genotypes predicted lack of response better than alleles. However, combination of IL28B haplotype 2 carrier status with the HLA-C C2C2 genotype, which has previously been reported to improve prediction in combination with IL28B, provides the highest PPV (80%). The haplotypes present alternative putative transcription factor binding and methylation sites. CONCLUSIONS: Massively parallel sequencing allowed identification and comparison of the best common SNPs for identifying treatment failure in therapy for HCV. SNPs tagging a single haplotype have the highest PPV, especially in combination with HLA-C. The functional basis for the association may be due to altered regulation of the gene. These approaches have utility in improving diagnostic testing and identifying causal haplotypes or SNPs.

20.
PLoS One ; 5(12): e14176, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-21152067

ABSTRACT

BACKGROUND: Several lines of evidence suggest that transcription factors are involved in the pathogenesis of Multiple Sclerosis (MS) but complete mapping of the whole network has been elusive. One of the reasons is that there are several clinical subtypes of MS and transcription factors that may be involved in one subtype may not be in others. We investigate the possibility that this network could be mapped using microarray technologies and contemporary bioinformatics methods on a dataset derived from whole blood in 99 untreated MS patients (36 Relapse Remitting MS, 43 Primary Progressive MS, and 20 Secondary Progressive MS) and 45 age-matched healthy controls. METHODOLOGY/PRINCIPAL FINDINGS: We have used two different analytical methodologies: a non-standard differential expression analysis and a differential co-expression analysis, which have converged on a significant number of regulatory motifs that are statistically overrepresented in genes that are either differentially expressed (or differentially co-expressed) in cases and controls (e.g., V$KROX_Q6, p-value <3.31E-6; V$CREBP1_Q2, p-value <9.93E-6, V$YY1_02, p-value <1.65E-5). CONCLUSIONS/SIGNIFICANCE: Our analysis uncovered a network of transcription factors that potentially dysregulate several genes in MS or one or more of its disease subtypes. The most significant transcription factor motifs were for the Early Growth Response EGR/KROX family, ATF2, YY1 (Yin and Yang 1), E2F-1/DP-1 and E2F-4/DP-2 heterodimers, SOX5, and CREB and ATF families. These transcription factors are involved in early T-lymphocyte specification and commitment as well as in oligodendrocyte dedifferentiation and development, both pathways that have significant biological plausibility in MS causation.


Subject(s)
Gene Expression Profiling , Genome-Wide Association Study , Multiple Sclerosis/blood , RNA, Messenger/metabolism , Transcription Factors/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Case-Control Studies , Cohort Studies , Female , Humans , Male , Middle Aged , Multiple Sclerosis/metabolism , Oligodendroglia/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...